Show Less
Restricted access

Linguistic Landscapes im deutschsprachigen Kontext

Forschungsperspektiven, Methoden und Anwendungsmöglichkeiten


Edited By Evelyn Ziegler and Heiko F. Marten

Die Erforschung von Sprache im öffentlichen Raum (Linguistic Landscapes, LL) hat sich in den vergangen 20 Jahren als Teilgebiet der Soziolinguistik, der Semiotik und anderer Disziplinen fest etabliert. Der vorliegende Band gibt einen Überblick zu zentralen Ansätzen der LL-Forschung mit einem Bezug zur deutschen Sprache. Die Beiträge stellen aktuelle Studien aus dem deutschsprachigen Raum, zu Deutsch als Minderheitensprache sowie aus Ländern mit einer ausgeprägten DaF-Tradition vor. Sie thematisieren sprachstrukturelle und soziolinguistische ebenso wie didaktische, methodische und technologische Aspekte. Damit trägt der Band zu einer Systematisierung der deutschsprachigen LL-Forschung bei, gibt Impulse für internationale Diskussionen und benennt wichtige Desiderata.

Show Summary Details
Restricted access

Exploring Corpus Linguistics Approaches in Linguistic Landscape Research with Automatic Text Recognition Software

Peter Gilles / Evelyn Ziegler


Abstract Taking a more quantitative approach in linguistic landscape research, we explore recent techniques of automatic information extraction from images. The recently released Cloud Vision API by Google offers new perspectives on the software-assisted processing and classification of pictures. A software interface makes it possible to extract various kinds of information from pictures automatically, among them the written text, certain labels to describe the picture (e.g. road sign, shop sign, prohibition sign) or the colours used in the picture. Applying this new technique to large-scale image data collections will not only enhance analysis but may also offer hitherto unrecognized structures. The data comes from a large-scale investigation of the Ruhr Metropolis in Germany, where 25,504 photos have been taken to document the linguistic landscape of selected neighbourhoods in four cities (Ziegler et al. 2018). This data has been annotated manually in various categories to analyze the occurrence, form and function of visual multilingualism. These pictures are then automatically processed by the Cloud Vision API and the results compared to the manual annotation. It will be shown that the quality of the image recognition greatly depends on the quality of the picture. The textual information extracted from the pictures will be stored in a database. Rather than presenting results on the linguistic landscape, this chapter is predominantly concerned with practical tools to facilitate large-scale linguistic landscape research.

Keywords: methodologycorpus linguisticsautomatic text extractiontext identificationRuhr Metropolis

Over the last 20 years, various methods have been established in linguistic...

You are not authenticated to view the full text of this chapter or article.

This site requires a subscription or purchase to access the full text of books or journals.

Do you have any questions? Contact us.

Or login to access all content.