Show Less
Open access

Tableau Methods for Propositional Logic and Term Logic

Series:

Tomasz Jarmużek

The book aims to formalise tableau methods for the logics of propositions and names. The methods described are based on Set Theory. The tableau rule was reduced to an ordered n-tuple of sets of expressions where the first element is a set of premises, and the following elements are its supersets.

Show Summary Details
Open access

Bibliography

←220 | 221→

Bibliography

  1. D’Agostino M., Gabbay D., Haehnle R., Posegga J. (eds.). Handbook of tableau methods. Kluwer, 1999.
  2. Fitting M. First-order logic and automated theorem proving, (the second edition). Springer-Verlag, 1996.
  3. Goré R. Tableau methods for modal and temporal logics. pp. 297–396 in [1].
  4. Indrzejczak A. Hybrydowe systemy dedukcyjnewlogikach modalnych, (Hybrid deductive systems for modal logic) Wydawnictwo Uniwersytetu Łódzkiego. Łódź 2006.
  5. Jeffrey R. Formal logic: its scope and limits, (the third edition). McGraw Hill, 1990 (1967).
  6. Jarmużek T. Construction of tableaux for classical logic: tableaux as combinations of branches, branches as chains of sets. Logic and Logical Philosophy. 2007, 1 (16), pp. 85–101.
  7. Jarmużek T. Relating semantics as fine-grained semantics for intensional logics. pp. 13–32. Logic in high definition. Current issues in logical semantics. A. Giordani, J. Malinowski (eds.), Springer, 2020.
  8. Jarmużek T. Tableau metatheorem for modal logics. pp. 105–123. Recent trends in philosophical logic. R. Ciuni, H.Wansing, C.Willkommen (eds.), Springer, 2013.
  9. Jarmużek T. Tableau system for logic of categorial propositions and decidability. Bulletin of The Section of Logic. 2008, 37 (3/4), pp. 223–231.
  10. Jarmużek T., Kaczkowski B. On some logic with a relation imposed on formulae: tableau system F. Bulletin of The Section of Logic. 2014, 43(1), pp. 53–72.
  11. Jarmużek T., Klonowski M. Some intensional logics defined by relatng semantics and tableau systems. pp. 33–50. Logic in high definition. Current issues in logical semantics. A. Giordani, J.Malinowski (eds.), Springer, 2020.
  12. Jarmużek T., Malinowski J., 2019a. Boolean connexive logics. Semantics and tableau approach. Logic and Logical Philosophy. 2019, (3)28, pp. 427–448.
  13. Jarmużek T., Malinowski J., 2019b. Modal boolean connexive logics. Semantics and tableau approach. Bulletin of The Section of Logic. 2020, 48(3), pp. 213–243.
  14. Jarmużek T., Pietruszczak A. Semantics and tableaus for modal syllogistic de re. p. 249. 4th World Congress and School on Universal Logic. Handbook. J. Y. Beziau, A. Buchsbaum, A. Costa-Leite, A. Altair (eds.), 2013.
  15. Jarmużek T., Pietruszczak A. Decidability methods for modal syllogisms, Trends in Logic XIII. A. Indrzejczak, J. Kaczmarek, andM. Zawidzki (eds.), Łódź University Press, Łódź, 2014.
  16. ←221 | 222→ Johnson F. Models for modal syllogisms. Notre Dame Journal of Formal Logic. 30, pp. 271–284.
  17. Kulicki P. Aksjomatyczne systemy rachunku nazw (Axiomatic systems of syllogistic). Wydawnictwo naukowe KUL, Lublin 2011.
  18. Kulicki P. On minimal models for pure calculi of names. Logic and Logical Philosphy. 2013, 22, pp. 429–443.
  19. Kulicki P. On a Minimal system of Aristotle’s syllogistic. Bulletin of The Section of Logic. 2011, 3/4, 40, pp. 129–145.
  20. Pietruszczak A. Cardinalities of models for pure calculi of names. Reports on Mathematical Logic. 1994, 28, pp. 87–102.
  21. Pietruszczak A. Cardinalities of models and the expressive power of monadic predicate logic. Reports on Mathematical Logic. 1996, 30, pp. 49–64.
  22. Pietruszczak, A., Jarmużek, T. Pure modal logic of names and tableau systems, 2018. Studia Logica 106. pp. 1261–1289.
  23. Priest G. An Introduction to non-classical logic. Cambridge University Press, 2001.
  24. Smullyan R. First order-logic. Dover Publications, 1995 (1968).
  25. Suchoń W. Sylogistyki klasyczne (Classical syllogistic). Universitas, Kraków 1999.
  26. Thomason S. K. Semantic analysis of the modal syllogistic. Journal of Philosophical Logic. 1993, 22, pp. 111–128.
  27. Thomason S. K. Relational models for the modal syllogistic. Journal of Philosophical Logic. 1997, 26, pp. 129–141.