Show Less

Operational Planning Problems in Intermodal Freight Transportation

Series:

Jenny Nossak

This book addresses logistics problems (e.g., routing and partitioning problems) that are encountered in intermodal freight transportation. The reader is given an overview of the relevant literature, as well as of different mathematical formulations. Moreover, algorithmic solution approaches are suggested which are specially designed for problems that arise in the context of intermodal freight transportation, but can be applied to other areas as well.

Prices

Show Summary Details
Restricted access

Contents

Extract

List of Figures ix List of Tables xi 1 Introduction 1 1.1 Notation and Terminology . . . . . . . . . . . . . . . . . . . 3 1.1.1 Graph Notation . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Routing Problems . . . . . . . . . . . . . . . . . . . . 5 1.1.3 Partitioning Problems . . . . . . . . . . . . . . . . . 8 1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Truck Scheduling Problem 11 2.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 Mathematical Formulations . . . . . . . . . . . . . . . . . . . 21 2.4.1 FTPDPTW Formulation . . . . . . . . . . . . . . . . 21 2.4.2 m-TSPTW Formulation . . . . . . . . . . . . . . . . 26 2.5 Solution Approach: 2-Stage Heuristic . . . . . . . . . . . . . 28 2.5.1 Stage 1: Route Construction Heuristic . . . . . . . . . 28 2.5.2 Stage 2: Route Improvement Heuristic . . . . . . . . 36 2.6 Computational Study . . . . . . . . . . . . . . . . . . . . . . 41 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3 1-Full-Truckload Pickup-and-Delivery Traveling Salesman Problem 49 3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . 50 viii Contents 3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4 Mathematical Formulations . . . . . . . . . . . . . . . . . . . 52 3.4.1 Integrated Formulation . . . . . . . . . . . . . . . . . 52 3.4.2 TSP Formulation . . . . . . . . . . . . . . . . . . . . 57 3.5 Solution Approaches . . . . . . . . . . . . . . . . . . . . . . 58 3.5.1 Classical Benders Decomposition . . . . . . . . . . . . 59 3.5.2 Generalized Benders Decomposition . . . . . . . . . . 63 3.5.3 Computational Considerations . . . . . . . . . . . . . 68 3.6 Computational Study . . . . . . . . . . . . . . . . . . . . . . 70 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4 Acyclic Partitioning Problem 79 4.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . 79 4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 82 4.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.4 Properties of the Acyclic Partitioning Problem . . . . . . . . 84 4.5 Mathematical Formulations . . . . . . . . . . . . . . . . . . . 87 4.5.1 Compact Formulation . . . . . . . . . . . . . . . . . . 87 4.5.2 Augmented Set Partitioning Formulation . . . . . . . 89 4.6 Solution Approaches . . . . . . . . . . . . . . . . . . . . . . 90 4.6.1 Branch-and-Bound . . . . . . . . . . . . . . . . . . . 90 4.6.2 Branch-and-Price . . . . . . . . . . . . . . . . . . . . 104 4.7 Computational Study . . . . . . . . . . . . . . . . . . . . . . 115 4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5 Conclusions and Future Research 123 Bibliography 125

You are not authenticated to view the full text of this chapter or article.

This site requires a subscription or purchase to access the full text of books or journals.

Do you have any questions? Contact us.

Or login to access all content.