Lade Inhalt...

Zielgruppenselektion für Direktmarketingkampagnen

Scoringmodellierung bei unterrepräsentierter Zielgruppe unter Verwendung supplementierender Datenbestände

von Wendy Gersten (Autor:in)
Dissertation 322 Seiten

Zusammenfassung

Aus einer Liste potentiell kontaktierbarer Personen die Zielgruppe auszuwählen entscheidet über den Erfolg von Direktmarketingkampagnen. Für die Zielgruppenselektion werden so genannte Scoringmodelle genutzt, die man mithilfe von Lernfällen kalibriert. Ideale Lernfälle sind Personen, die bereits an einer gleichartigen Kampagne teilnahmen und darauf z. B. durch (Nicht-)Kauf reagierten. Durch Produktvielfalt und Zielgruppendifferenzierung liegen oft zu wenige oder keine idealen Lernfälle vor. Dieses Buch illustriert, wie Hilfsdatenbestände die fehlenden Lernfälle ergänzen bzw. ersetzen. Experimente mit Automobildaten zeigen, auf welche Weise man mittels halbüberwachtem Lernen, Variablentransformation und Analogieschluss geeignete Hilfsdatenbestände auswählt und somit das Scoringmodell und letztlich die Zielgruppenselektion für eine Kampagne optimiert.

Details

Seiten
322
ISBN (Paperback)
9783631541579
Sprache
Deutsch
Erschienen
Frankfurt am Main, Berlin, Bern, Bruxelles, New York, Oxford, Wien, 2005. 322 S., 73 Abb., 59 Tab.

Biographische Angaben

Wendy Gersten (Autor:in)

Die Autorin: Wendy Gersten, geboren 1974; Studium der Betriebswirtschaft, insbesondere Marketing und Wirtschaftsinformatik, an den Universitäten Dresden und Lille; 2000-2003 Projekte im Bereich Analytisches Customer Relationship Management in der Forschung eines Automobilherstellers sowie Promotion an der Universität Jena; seit 2004 Vertriebsprojekte bei der Nutzfahrzeugsparte eines Automobilherstellers in Zusammenarbeit mit den konzerneigenen Financial Services.

Zurück

Titel: Zielgruppenselektion für Direktmarketingkampagnen